Regularity Results on the Leray-alpha Magnetohydrodynamics Systems

نویسنده

  • KAZUO YAMAZAKI
چکیده

We study certain generalized Leray-alpha magnetohydrodynamics systems. We show that the solution pairs of velocity and magnetic fields to this system in two-dimension preserve their initial regularity in two cases: dissipation logarithmically weaker than a full Laplacian and zero diffusion, zero dissipation and diffusion logarithmically weaker than a full Laplacian. These results extend previous results in [41]. Moreover, we show that for a certain three-dimensional Leray-alpha magnetohydrodynamics system, sufficient condition of regularity may be reduced to a horizontal gradient or a partial derivative in just one direction of the magnetic field, reducing components from the results in [11].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Interior Regularity in Weak Spaces

We consider the interior regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)) was obtained. By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [KK] was solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (1)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we proved that if u L 2 w (0,T ;L ∞ (R 3)) is small then the Leray-Hopf solutions are regular. Particularly, an open problem proposed in [7] was solved.

متن کامل

Regularity of Leray-hopf Solutions to Navier-stokes Equations (i)-critical Regularity in Weak Spaces

We consider the regularity of Leray-Hopf solutions to impressible Navier-Stokes equations on critical case u ∈ L 2 w (0, T ; L ∞ (R 3)). By a new embedding inequality in Lorentz space we prove that if u L 2 w (0,T ;L ∞ (R 3)) is small then as a Leray-Hopf solution u is regular. Particularly, an open problem proposed in [8] is solved.

متن کامل

Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components

Articles you may be interested in Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems Regularity criteria of weak solutions to the three-dimensional micropolar flows Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only t...

متن کامل

Functions spaces usefull for 3D periodic Navier-Stokes equations

This work will be the first chapter of a book in progress. This project aims to study the 3D periodic Navier-Stokes equations, existence and regularity up-date results. We also shall study some LES related models like Leray-alpha, Bardina, ADM and deconvolution models, including the most recent results on these models. We have take care in this work to make rigorous the mathematical foundations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016